PHP XML (updated 05/28/2013)

(Document still being edited)
XML & PHP: Historically, PHP has not been at the forefront in terms of XML support. It was not until PHP5 that PHP provided XML processing engines in the core code to process simple and large-scale XML document. Prior to PHP5, many developers had to use third party XML parsers.

Sample Files: Many of the snippets below are based on sample files mentioned through the code. Be sure to load the entire folder into your web space and view the files!

SAX, DOM & SimpleXML: By PHP5, there is now support via SAX, DOM & SimpleXML, which can be used for different purposes in XML documents. At this time PHP has several other options for parsing XML files: XML Manipulation Overview on PHP.NET Site
3 Parsers of Interest: Of the parsing implementations presented on the PHP.net website, there are three in particular that strike our interest. Technically they are all based on the same parsing engine, but how they operate in the field differs greatly, as you'll see below!

	PHP Parser
	Style
	Best Case Scenario
	Liability
	Notes

	SimpleXML
	DOM (tree based)
	Quick parsing simple XML docs designed to be parsed
	XML file must be near perfect. Will trip on invalid XML. All nodes are the same (elements/attributes) Will miss some data (CDATA)
	Less complex then DOM, and a bit faster. If it does what you need, it may be enough!

	DOM (DOMDocument)
	DOM (tree based)
	Complex parsing of flawed docs such as live HTML documents. Follows DOM standards.
	Slowest of the 3. May be overly complicated for simple processing.
	Built on the DOM specification. By far the most complete and flexible implementation.

	ReadXML
	SAX (pull parser)
	Parses large XML files quickly, up to 20 times faster than SimpleXML for a 20MB file.
	Does not have the built in methods of the other parsers.
	An event-based pull parser. Since it's not DOM based, does not read entire file into memory.

Of the above, SimpleXML & DOM are tree-based and read the entire document into memory prior to processing. ReadXML however pulls the data in and reads as necessary, which is the only way to effectively process a large XML file. Here's an excerpt of a discussion on stackoverflow:

DOM and SimpleXML aren't actually two different parsers. The real parser is libxml2, which is used internally by DOM and SimpleXML. So DOM/SimpleXML are just two ways to use the same parser and they provide ways to convert one object to another.
SimpleXML is intended to be very simple so it has a small set of functions, and it is focused on reading and writing data. That is, you can easily read or write a XML file, you can update some values or remove some nodes (with some limitations!), and that's it. No fancy manipulation, and you don't have access to the less common node types. For instance, SimpleXML cannot create a CDATA section although it can read them.
DOM offers a full-fledged implementation of the DOM plus a couple of non-standard methods such as appendXML. If you're used to manipulate DOM in Javascript, you'll find exactly the same methods in PHP's DOM. There's basically no limitation in what you can do and it evens handles HTML. The flipside to this richness of features is that it is more complex and more verbose than SimpleXML.

People often wonder/ask what extension they should use to handle their XML or HTML content. Actually the choice is easy because there isn't much of a choice to begin with:

· if you need to deal with HTML, you don't really have a choice: you have to use DOM
· if you have to do anything fancy such as moving nodes or appending some raw XML, again you pretty much have to use DOM

· if all you need to do is read and/or write some basic XML (e.g. exchanging data with an XML service or reading a RSS feed) then you can use either SimpleXML, DOM Or both.

· if your XML document is so big that it doesn't fit in memory, you can't use either and you have to use XMLReader which is also based on libxml2, is even more annoying to use but still plays nice with others
Here's where some of the above discussion came from: PHP Parser Discussion
Performance: Here's a speed comparison of the 3 parsers (or as we now know, implementations of the same parser): Performance: SimpleXML vs DOM vs XMLReader On a large file however, XMLReader is King: Reading Large XML Files with PHP
SimpleXML: SimpleXML is the simplest to use of the core PHP XML parsing implementations. It requires relatively few lines of code to read and process data as compared to the other two parsers. We can use one of the following functions to load an XML file from a string, file or DOM document:

simplexml_import_dom() — Get a SimpleXMLElement object from a DOM node.
simplexml_load_file() — Interprets an XML file into an object
simplexml_load_string() — Interprets a string of XML into an object

For our first example, we'll load an XML file from the same folder where the PHP file resides:

$xml = simplexml_load_file('catalog.xml');

The resulting variable (in our case $xml) is an instance of the SimpleXMLElement, and an object that has the following methods at it's disposal:

SimpleXMLElement::addAttribute — Adds an attribute to the SimpleXML element
SimpleXMLElement::addChild — Adds a child element to the XML node
SimpleXMLElement::asXML — Return a well-formed XML string based on SimpleXML element
SimpleXMLElement::attributes — Identifies an element's attributes
SimpleXMLElement::children — Finds children of given node
SimpleXMLElement::__construct — Creates a new SimpleXMLElement object
SimpleXMLElement::count — Counts the children of an element (PHP 5.3 or higher!)
SimpleXMLElement::getDocNamespaces — Returns namespaces declared in document
SimpleXMLElement::getName — Gets the name of the XML element
SimpleXMLElement::getNamespaces — Returns namespaces used in document
SimpleXMLElement::registerXPathNamespace — Creates a prefix/ns context for the next XPath query
SimpleXMLElement::xpath — Runs XPath query on XML data

Using var_dump on a SimpleXML Object: For our first exercise, lets load an existing XML file into simpleXML and run var_dump() to examine the contents. Here's an XML file named contacts.xml:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<?xml-stylesheet type="text/css" href="http://www.billnsara.com/xml/examples/contacts.css"?>

<Contacts>

 <Contact Date="1/1/2004" ID="55">

 <FirstLast>John Doe</FirstLast>

 <StreetAddress>123 Pine</StreetAddress>

 <CityStateZip>Seattle, WA 98111</CityStateZip>

 <Phone>(206) 645 7890</Phone>

 </Contact>

 <Contact Date="1/2/2004" ID="56">

 <FirstLast>Jane Smith</FirstLast>

 <StreetAddress>6733 Baker Street</StreetAddress>

 <CityStateZip>Bellingham, WA 98635</CityStateZip>

 <Phone>(360) 346 7394</Phone>

 </Contact>

 <Contact Date="1/3/2004" ID="57">

 <FirstLast>Bud Black</FirstLast>

 <StreetAddress>3453 Elm Avenue</StreetAddress>

 <CityStateZip>Olympia, WA 95675</CityStateZip>

 <Phone>(360) 368 4462</Phone>

 </Contact>

</Contacts>

We'll store this file in a sub-folder named xml perhaps in our sandbox. Then create a simple page we'll call simpleXML1.php:

<?php

/*

simpleXML1.php - shows how to use var_dump()

to examine simpleXML objects returned from an XML file

*/

$file = 'xml/contacts.xml'; #A deep XML music file

$xml = simplexml_load_file($file);

echo '<pre>';

var_dump($xml);

echo '</pre>';

die;

?>

When we view this page with a browser, here's the data returned:

object(SimpleXMLElement)#1 (1) {

 ["Contact"]=>
 array(3) {
 [0]=>
 object(SimpleXMLElement)#2 (5) {
 ["@attributes"]=>
 array(2) {
 ["Date"]=>
 string(8) "1/1/2004"
 ["ID"]=>
 string(2) "55"
 }
 ["FirstLast"]=>
 string(8) "John Doe"
 ["StreetAddress"]=>
 string(8) "123 Pine"
 ["CityStateZip"]=>
 string(17) "Seattle, WA 98111"
 ["Phone"]=>
 string(14) "(206) 645 7890"
 }
 [1]=>
 object(SimpleXMLElement)#3 (5) {
 ["@attributes"]=>
 array(2) {
 ["Date"]=>
 string(8) "1/2/2004"
 ["ID"]=>
 string(2) "56"
 }
 ["FirstLast"]=>
 string(10) "Jane Smith"
 ["StreetAddress"]=>
 string(17) "6733 Baker Street"
 ["CityStateZip"]=>
 string(20) "Bellingham, WA 98635"
 ["Phone"]=>
 string(14) "(360) 346 7394"
 }
 [2]=>
 object(SimpleXMLElement)#4 (5) {
 ["@attributes"]=>
 array(2) {
 ["Date"]=>
 string(8) "1/3/2004"
 ["ID"]=>
 string(2) "57"
 }
 ["FirstLast"]=>
 string(9) "Bud Black"
 ["StreetAddress"]=>
 string(15) "3453 Elm Avenue"
 ["CityStateZip"]=>
 string(17) "Olympia, WA 95675"
 ["Phone"]=>
 string(14) "(360) 368 4462"
 }
 }
}
Upon examination of the above, we see that we have a simpleXML object named Contact, which contains an array of 3 additional simpleXML elements. Note that the Namespace and XML declaration data was bypassed.

Let's use the hint provided by var_dump() above to loop through and deliver only the contents of the FirstLast element in each in example file simpleXML2.php:

foreach($xml[0] as $contact)

{

echo $contact->FirstLast . '
';

}

This indeed returns the values of the FirstLast element:

John Doe
Jane Smith
Bud Black

In the above code we're capturing the contact element via the numeric array $xml[0]. We deduced we could do this due to the return of var_dump().

Attributes: Next lets return an attribute from our XML file. This is the Date attribute for each of the contacts in simpleXML3.php:

foreach($xml[0] as $contact)

{//show the Date Attribute

echo $contact->attributes()->Date . '
';

}

In the above we aren't using the @attributes designation from our var_dump(), but instead the attributes() method!

Retrieving Unknown Elements: The tactics above are good for picking pieces out of a relatively small XML file. But what if we don't know the contents? Let's determine dynamically the contents of the file using getName(), children() and attributes():

//We'd like to use $xml[0]->count() below but can't with less than PHP 5.3

echo 'There are ' . count($xml[0]) . ' child elements to the ' . $xml[0]->getName() . ' element!';

foreach($xml[0]->children() as $child)

{//loop all children of existing node

echo '
';

//show name of current element

echo $child->getName() . ': ' . $child . ' ';

//loop attributes

foreach($child->attributes() as $attr) {

 echo $attr->getName() . '=' . $attr . ' ';

}

}
While we can use the above to see the sibling elements (Contact) inside the root element (Contacts) we don't see any further into the structure than that. We'll need another technique to drill down. Note also in the above we didn't use the following to get the count of elements:

$xml[0]->count()

This is because zephir doesn't currently support PHP 5.3!

Recursive Functions: When a function calls itself in order to run the same function again, its called recursion. Recursive functions are very powerful and can be used to examine every sub-folder for example in a file system. In our case we want to use a recursive function in order to view the details of each and every element. Here's a recursive function to do just that. It's referenced in an include file named php-xml_inc.php. The result is visible simpleXML5.php:

function simpleXMLRecursive($xmlObj,$depth=0){

foreach($xmlObj->children() as $child)

{//loop all children of existing node

echo '
';

//str_repeat() shows an error for each level of depth

echo str_repeat('->',$depth) . $child->getName() . ': ' . $child . ' ';

//loop attributes

foreach($child->attributes() as $attr) {

 echo str_repeat('',$depth) . $attr->getName() . '=' . $attr . ' ';

}

//loop again at $depth+1

simpleXMLRecursive($child,$depth+1);

}

}

Above we can see the function call itself by name (highlighted). The depth is incremented to go one step lower! This function can be seen used against a large test XML file in simpleXML6.php.

Xpath/XQuery: XPath allows XML nodes to be selected by means of a hierarchic navigation path through the document tree. We can filter an XML file down with a query in a similar way that we can filter data down when working with a database by using SQL. The language used to filter XML is called XQuery. In the following example we'll filter the data down from an existing XML file, simpleXML7.php:
$file = 'xml/catalog.xml';

$xml = simplexml_load_file($file);
//uses xPath to filter the catalog to only zeppelin albums

$zep = $xml->xPath('/catalog/cd[artist="Led Zeppelin"]');
echo '<pre>';

var_dump($zep);

echo '</pre>';

die;
When we run var_dump() on the above, an array of SimpleXML elements is returned, identifying the cd's for the band led zeppelin:
array(2) {

 [0]=>

 object(SimpleXMLElement)#2 (7) {

 ["@attributes"]=>

 array(2) {

 ["id"]=>

 string(1) "9"

 ["sale"]=>

 string(4) "true"

 }

 ["title"]=>

 string(18) "Houses Of The Holy"

 ["artist"]=>

 string(12) "Led Zeppelin"

 ["country"]=>

 string(2) "UK"

 ["company"]=>

 string(8) "Atlantic"

 ["price"]=>

 string(5) "10.80"

 ["year"]=>

 string(4) "1973"

 }

 [1]=>

 object(SimpleXMLElement)#3 (7) {

 ["@attributes"]=>

 array(1) {

 ["id"]=>

 string(2) "11"

 }

 ["title"]=>

 string(15) "Led Zeppelin IV"

 ["artist"]=>

 string(12) "Led Zeppelin"

 ["country"]=>

 string(2) "UK"

 ["company"]=>

 string(8) "Atlantic"

 ["price"]=>

 string(5) "10.90"

 ["year"]=>

 string(4) "1971"

 }

}

We can access the SimpleXML objects with a foreach in simpleXML8.php:
foreach($zep as $album)

{

echo $album->title . ', ' . $album->year . '
';

}

Other examples need to be documented here:
FeedReader with SimpleXML
DOMdocument examples with XSL, version 1 & 2
Third Party Solutions: Beside the various built in XML parsers and implementations, there are several third party parsers built to either be more flexible than standard XML parsers such as Simple HTML DOM or to be used in special cases, such as RSS readers. RSS readers are important because we can use these to consume news feeds in various formats and aggregate them, which means to consume multiple feeds and build our own dynamic news section for our websites out of existing news feeds! The most popular such RSS Reader for PHP is SimplePie which is built into applications such as WordPress and Drupal. Other third party solutions include XMLToArray and Magpie. To see why someone would build their own API, read a bit of the following: Sadness, Rage & RSS
billnsara.com/advdb/
Page 10

